Mot-clefEuclide d’Alexandrie

au­teur

Euclide, « Les Éléments. Tome II »

éd. Presses universitaires de France, coll. Bibliothèque d’histoire des sciences, Paris

éd. Presses uni­ver­si­taires de France, coll. Bi­blio­thèque d’histoire des sciences, Pa­ris

Il s’agit des « Élé­ments » (« Ta Stoi­cheia »1) ou « En­sei­gne­ment élé­men­taire » (« Hê Stoi­cheiô­sis »2) d’Euclide d’Alexandrie3, cé­lèbre sa­vant grec, dont le nom est pour la géo­mé­trie ce qu’est le nom d’Einstein pour la phy­sique. La science grecque est es­sen­tiel­le­ment dé­duc­tive. C’est avec elle que l’esprit hu­main conçoit, pour la pre­mière fois, la pos­si­bi­lité de po­ser un pe­tit nombre de prin­cipes et d’en dé­duire un en­semble de vé­ri­tés qui en soient la consé­quence né­ces­saire. Les « Élé­ments » d’Euclide passent pour le mo­dèle du genre. Ils dé­butent par une liste d’« axiomes » (c’est-à-dire de prin­cipes que l’on de­mande au lec­teur d’admettre sans dé­mons­tra­tion), énon­cés de telle sorte qu’ils peuvent être ac­cep­tés par cha­cun ; tout en étant aussi peu nom­breux que pos­sible (en­vi­ron une di­zaine), ils suf­fisent à as­su­rer la construc­tion de tout l’édifice ma­thé­ma­tique. Dans une pre­mière lec­ture, l’on se­rait tenté de croire qu’Euclide est l’inventeur de ce genre de construc­tion. Il ne cite au­cun nom de pré­dé­ces­seur ; des pro­po­si­tions que nous dé­si­gnons sous les noms de « théo­rème de Py­tha­gore » ou « de Tha­lès » prennent place dans ses « Élé­ments » sans que soient rap­pe­lés ceux qui les ont énon­cées en pre­mier. Ce­pen­dant, Eu­clide a beau ne pas ci­ter ses sources, son œuvre dé­cèle une di­ver­sité d’inspirations qui ne trompe pas ; elle n’est pas et ne sau­rait être l’œuvre d’une seule in­tel­li­gence. Des géo­mètres plus an­ciens — Hip­po­crate de Chios4, Her­mo­time de Co­lo­phon5, Eu­doxe de Cnide6, Théé­tète d’Athènes7, Theu­dios de Ma­gné­sie8 — avaient écrit des « Élé­ments ». Le mé­rite d’Euclide est d’avoir réuni leurs dé­mons­tra­tions et sur­tout d’avoir com­posé un tout qui, par un en­chaî­ne­ment plus exact, fit ou­blier les ou­vrages écrits avant le sien, qui de­vint le plus im­por­tant sur cette ma­tière. Voici ce qu’en dit Pro­clus dans ses « Com­men­taires aux “Élé­ments” » : « En ras­sem­blant des “Élé­ments”, Eu­clide en a co­or­donné beau­coup d’Eudoxe, per­fec­tionné beau­coup de Théé­tète et évo­qué dans d’irréfutables dé­mons­tra­tions ceux que ses pré­dé­ces­seurs avaient mon­trés d’une ma­nière re­lâ­chée »

  1. En grec « Τὰ Στοιχεῖα ». Haut
  2. En grec « Ἡ Στοιχείωσις ». Haut
  3. En grec Εὐκλείδης. Au­tre­fois trans­crit Eu­clides. On l’a long­temps confondu avec Eu­clide de Mé­gare, phi­lo­sophe, « bien qu’ils n’aient pas été contem­po­rains et qu’ils aient dif­féré l’un de l’autre au­tant par leur genre d’esprit… que par la na­ture de leurs tra­vaux » (Louis Fi­guier). Haut
  4. En grec Ἱπποκράτης ὁ Χῖος. Par­fois trans­crit Hip­po­crate de Chio. À ne pas confondre avec Hip­po­crate de Cos, le cé­lèbre mé­de­cin, qui vé­cut à la même époque. Haut
  1. En grec Ἑρμότιμος ὁ Κολοφώνιος. Haut
  2. En grec Εὔδοξος ὁ Κνίδιος. Haut
  3. En grec Θεαίτητος ὁ Ἀθηναῖος. Haut
  4. En grec Θεύδιος ὁ Μάγνης. Haut

Euclide, « Les Éléments. Tome I »

éd. Presses universitaires de France, coll. Bibliothèque d’histoire des sciences, Paris

éd. Presses uni­ver­si­taires de France, coll. Bi­blio­thèque d’histoire des sciences, Pa­ris

Il s’agit des « Élé­ments » (« Ta Stoi­cheia »1) ou « En­sei­gne­ment élé­men­taire » (« Hê Stoi­cheiô­sis »2) d’Euclide d’Alexandrie3, cé­lèbre sa­vant grec, dont le nom est pour la géo­mé­trie ce qu’est le nom d’Einstein pour la phy­sique. La science grecque est es­sen­tiel­le­ment dé­duc­tive. C’est avec elle que l’esprit hu­main conçoit, pour la pre­mière fois, la pos­si­bi­lité de po­ser un pe­tit nombre de prin­cipes et d’en dé­duire un en­semble de vé­ri­tés qui en soient la consé­quence né­ces­saire. Les « Élé­ments » d’Euclide passent pour le mo­dèle du genre. Ils dé­butent par une liste d’« axiomes » (c’est-à-dire de prin­cipes que l’on de­mande au lec­teur d’admettre sans dé­mons­tra­tion), énon­cés de telle sorte qu’ils peuvent être ac­cep­tés par cha­cun ; tout en étant aussi peu nom­breux que pos­sible (en­vi­ron une di­zaine), ils suf­fisent à as­su­rer la construc­tion de tout l’édifice ma­thé­ma­tique. Dans une pre­mière lec­ture, l’on se­rait tenté de croire qu’Euclide est l’inventeur de ce genre de construc­tion. Il ne cite au­cun nom de pré­dé­ces­seur ; des pro­po­si­tions que nous dé­si­gnons sous les noms de « théo­rème de Py­tha­gore » ou « de Tha­lès » prennent place dans ses « Élé­ments » sans que soient rap­pe­lés ceux qui les ont énon­cées en pre­mier. Ce­pen­dant, Eu­clide a beau ne pas ci­ter ses sources, son œuvre dé­cèle une di­ver­sité d’inspirations qui ne trompe pas ; elle n’est pas et ne sau­rait être l’œuvre d’une seule in­tel­li­gence. Des géo­mètres plus an­ciens — Hip­po­crate de Chios4, Her­mo­time de Co­lo­phon5, Eu­doxe de Cnide6, Théé­tète d’Athènes7, Theu­dios de Ma­gné­sie8 — avaient écrit des « Élé­ments ». Le mé­rite d’Euclide est d’avoir réuni leurs dé­mons­tra­tions et sur­tout d’avoir com­posé un tout qui, par un en­chaî­ne­ment plus exact, fit ou­blier les ou­vrages écrits avant le sien, qui de­vint le plus im­por­tant sur cette ma­tière. Voici ce qu’en dit Pro­clus dans ses « Com­men­taires aux “Élé­ments” » : « En ras­sem­blant des “Élé­ments”, Eu­clide en a co­or­donné beau­coup d’Eudoxe, per­fec­tionné beau­coup de Théé­tète et évo­qué dans d’irréfutables dé­mons­tra­tions ceux que ses pré­dé­ces­seurs avaient mon­trés d’une ma­nière re­lâ­chée »

  1. En grec « Τὰ Στοιχεῖα ». Haut
  2. En grec « Ἡ Στοιχείωσις ». Haut
  3. En grec Εὐκλείδης. Au­tre­fois trans­crit Eu­clides. On l’a long­temps confondu avec Eu­clide de Mé­gare, phi­lo­sophe, « bien qu’ils n’aient pas été contem­po­rains et qu’ils aient dif­féré l’un de l’autre au­tant par leur genre d’esprit… que par la na­ture de leurs tra­vaux » (Louis Fi­guier). Haut
  4. En grec Ἱπποκράτης ὁ Χῖος. Par­fois trans­crit Hip­po­crate de Chio. À ne pas confondre avec Hip­po­crate de Cos, le cé­lèbre mé­de­cin, qui vé­cut à la même époque. Haut
  1. En grec Ἑρμότιμος ὁ Κολοφώνιος. Haut
  2. En grec Εὔδοξος ὁ Κνίδιος. Haut
  3. En grec Θεαίτητος ὁ Ἀθηναῖος. Haut
  4. En grec Θεύδιος ὁ Μάγνης. Haut