Comptes rendus sur la littérature ancienne et moderne de toutes les nations

Mot-clefPaul Ver Eecke : traducteur ou traductrice

Archimède, « Œuvres complètes. Tome II »

éd. D. de Brouwer, coll. de travaux de l’Académie internationale d’histoire des sciences, Bruges

éd. D. de Brouwer, coll. de travaux de l’Académie internationale d’histoire des sciences, Bruges

Il s’agit de la « Quadrature de la parabole » et autres traités d’Archimède, le plus célèbre des inventeurs anciens (IIIe siècle av. J.-C.). Bien que toutes les sciences aient occupé Archimède, la géométrie et la physique sont néanmoins celles dans lesquelles éclata surtout son génie ; il était si passionné pour ces deux disciplines qu’il en « oubliait de boire et de manger, et négligeait tous les soins de son corps », rapporte Plutarque *. Il fut le premier à formuler ce principe qu’un corps plongé dans un liquide perd de son poids une quantité égale au poids du liquide qu’il déplace. La découverte de cette belle vérité lui causa tant de joie, rapporte Vitruve **, qu’il sortit entièrement nu du bain et courut dans Syracuse en criant : « J’ai trouvé ! j’ai trouvé ! » (« Heurêka ! heurêka ! » ***). On met au nombre des inventions d’Archimède la fameuse vis qui porte son nom, et dont les Égyptiens se servirent par la suite pour l’irrigation de leurs champs. Il montra en outre les propriétés des leviers, des poulies, des roues dentées, et était si enthousiaste de leur pouvoir, rapporte Pappus ****, qu’il déclarait un jour au roi Hiéron : « Donne-moi un point où je puisse me tenir, et j’ébranlerai la Terre » (« Dos moi pou stô, kai kinô tên Gên » *****). Mais de toutes ses inventions, celle qui excita le plus l’admiration des contemporains, c’est sa sphère mouvante. Constellée d’étoiles, elle représentait les mouvements et les positions des corps célestes. Cicéron en parle comme d’une merveille ; Claudien lui dédie une épigramme entière ******, dont voici les premiers vers : « Un jour que Jupiter voyait le ciel renfermé sous l’étroite enceinte d’un verre, il sourit et adressa ces paroles aux Immortels : “Voilà donc à quel point est portée l’adresse des mortels ! Dans un globe fragile est représenté mon ouvrage ; un vieillard dans Syracuse a transporté sur la terre par les efforts de son art les principes des cieux, l’harmonie des éléments et les lois des dieux…” » ; Cassiodore ajoute : « Ainsi une petite machine est chargée du poids du monde, c’est le ciel portatif, l’abrégé de l’univers, le miroir de la Nature » (« Parvamque machinam gravidam mundo, cælum gestabile, compendium rerum, speculum Naturæ »). Lisez la suite›

* « Les Vies des hommes illustres », vie de Marcellus.

** « Les Dix Livres d’architecture », liv. IX.

*** En grec « Εὕρηκα εὕρηκα ». Autrefois transcrit « Eurêka ! eurêka ! » ou « Eureca ! eureca ! ».

**** « La Collection mathémathique », liv. VIII.

***** En grec « Δός μοί ποῦ στῶ, καὶ κινῶ τὴν Γῆν ».

****** L’épigramme « Sur la sphère d’Archimède » (« In sphæram Archimedis »).

Archimède, « Œuvres complètes. Tome I »

éd. D. de Brouwer, coll. de travaux de l’Académie internationale d’histoire des sciences, Bruges

éd. D. de Brouwer, coll. de travaux de l’Académie internationale d’histoire des sciences, Bruges

Il s’agit de « Des spirales » (« Peri helikôn » *) et autres traités d’Archimède, le plus célèbre des inventeurs anciens (IIIe siècle av. J.-C.). Bien que toutes les sciences aient occupé Archimède, la géométrie et la physique sont néanmoins celles dans lesquelles éclata surtout son génie ; il était si passionné pour ces deux disciplines qu’il en « oubliait de boire et de manger, et négligeait tous les soins de son corps », rapporte Plutarque **. Il fut le premier à formuler ce principe qu’un corps plongé dans un liquide perd de son poids une quantité égale au poids du liquide qu’il déplace. La découverte de cette belle vérité lui causa tant de joie, rapporte Vitruve ***, qu’il sortit entièrement nu du bain et courut dans Syracuse en criant : « J’ai trouvé ! j’ai trouvé ! » (« Heurêka ! heurêka ! » ****). On met au nombre des inventions d’Archimède la fameuse vis qui porte son nom, et dont les Égyptiens se servirent par la suite pour l’irrigation de leurs champs. Il montra en outre les propriétés des leviers, des poulies, des roues dentées, et était si enthousiaste de leur pouvoir, rapporte Pappus *****, qu’il déclarait un jour au roi Hiéron : « Donne-moi un point où je puisse me tenir, et j’ébranlerai la Terre » (« Dos moi pou stô, kai kinô tên Gên » ******). Mais de toutes ses inventions, celle qui excita le plus l’admiration des contemporains, c’est sa sphère mouvante. Constellée d’étoiles, elle représentait les mouvements et les positions des corps célestes. Cicéron en parle comme d’une merveille ; Claudien lui dédie une épigramme entière *******, dont voici les premiers vers : « Un jour que Jupiter voyait le ciel renfermé sous l’étroite enceinte d’un verre, il sourit et adressa ces paroles aux Immortels : “Voilà donc à quel point est portée l’adresse des mortels ! Dans un globe fragile est représenté mon ouvrage ; un vieillard dans Syracuse a transporté sur la terre par les efforts de son art les principes des cieux, l’harmonie des éléments et les lois des dieux…” » ; Cassiodore ajoute : « Ainsi une petite machine est chargée du poids du monde, c’est le ciel portatif, l’abrégé de l’univers, le miroir de la Nature » (« Parvamque machinam gravidam mundo, cælum gestabile, compendium rerum, speculum Naturæ »). Lisez la suite›

* En grec « Περὶ ἑλίκων ».

** « Les Vies des hommes illustres », vie de Marcellus.

*** « Les Dix Livres d’architecture », liv. IX.

**** En grec « Εὕρηκα εὕρηκα ». Autrefois transcrit « Eurêka ! eurêka ! » ou « Eureca ! eureca ! ».

***** « La Collection mathémathique », liv. VIII.

****** En grec « Δός μοί ποῦ στῶ, καὶ κινῶ τὴν Γῆν ».

******* L’épigramme « Sur la sphère d’Archimède » (« In sphæram Archimedis »).

Proclus, « Les Commentaires sur le premier livre des “Éléments” d’Euclide »

éd. D. de Brouwer, coll. de travaux de l’Académie internationale d’histoire des sciences, Bruges

éd. D. de Brouwer, coll. de travaux de l’Académie internationale d’histoire des sciences, Bruges

Il s’agit des « Commentaires sur les “Éléments” d’Euclide » par Proclus de Lycie *, l’un des derniers chefs de l’École d’Athènes (Ve siècle apr. J.-C.). Le plus grand — pour ne pas dire l’unique — intérêt de ces « Commentaires » réside dans le prologue de quatre-vingt-une pages par lequel ils s’ouvrent, et qui constitue un ouvrage à part. Proclus y expose ses vues sur la place générale des mathématiques dans l’économie du savoir ; puis, il y présente les origines et les progrès de cette science, en passant en revue les géomètres grecs qui se sont succédé de Thalès jusqu’à Euclide. De ce fait, Proclus est notre principale source pour l’histoire des mathématiques anciennes ; en dehors de lui, nous n’avons qu’un petit nombre de témoignages épars, qu’il nous serait impossible de coordonner sans le sien. Pour Proclus, comme pour Aristote qu’il cite, les mathématiques ne débutent ni en Grèce, ni en quelque endroit privilégié ; il serait étrange, en effet, qu’un savoir aussi spécifiquement humain fût la propriété exclusive d’un seul peuple : « Selon toute vraisemblance », dit Aristote **, « les divers [savoirs] ont été développés aussi loin que possible, à plusieurs reprises et chaque fois perdus ». Cela n’empêche pas Proclus de saluer l’apport spécifique des Grecs, qui est d’avoir posé les mathématiques sur leur vrai plan, de les avoir hardiment définies comme abstraites et purement rationnelles, comme libres et désintéressées à l’égard de l’utilité pratique : « On admirera », dit Proclus ***, « les modes variés de raisonnements [de notre pays] qui [convainquent] tantôt en partant des causes, tantôt en émanant de preuves ; mais qui sont tous incontestables et appropriés à la science. On admirera aussi ses procédés dialectiques… Mentionnons finalement la continuité des inventions, la répartition et l’ordre des prémisses, [et] le talent avec lequel chacune [des] réciproques est présentée. D’ailleurs, ne sait-on pas qu’en leur ajoutant ou en leur retranchant quelque chose, on s’éloigne de la science et qu’on est enclin à une erreur contradictoire et à l’ignorance ? » La question de savoir où Proclus a pris ses renseignements historiques offre un problème intéressant à résoudre pour les spécialistes. Ces derniers pensent qu’il n’a pas consulté de première main les ouvrages mathématiques antérieurs à Euclide, et qu’il a emprunté à peu près tout à l’« Histoire géométrique » d’Eudème de Rhodes (aujourd’hui perdue) et à la « Théorie des mathématiques » de Géminus (malheureusement perdue aussi). Lisez la suite›

* En grec Πρόκλος ὁ Λύκιος. Autrefois transcrit Proclos ou Proklos.

** « Métaphysique », 1074b 10-12.

*** p. 62-63.