Comptes rendus sur la littérature ancienne et moderne de toutes les nations

Mot-clefarithmétique : sujet

Théon de Smyrne, « Exposition des connaissances mathématiques utiles pour la lecture de Platon »

XIXᵉ siècle

XIXe siècle

Il s’agit de Théon de Smyrne *, également connu sous le surnom de Théon l’Ancien **, philosophe platonicien du Ie-IIe siècle apr. J.-C. On ignore tout de sa vie, mais le hasard a voulu que le buste authentique de ce philosophe ait survécu aux vicissitudes des Empires et soit parvenu jusqu’à nous. Ce buste, trouvé à Smyrne par un marchand français, puis acheté à Marseille par le cardinal Alessandro Albani, puis cédé au pape Clément XII, peut être vu aujourd’hui à Rome, dans le musée du Capitole. L’inscription placée sur son socle nous fait connaître celui que ce marbre représente : « Le prêtre Théon consacre aux dieux l’image de Théon, philosophe platonicien, son père » ***. On en déduit que Théon eut un fils du même nom, et que ce fils était assez riche pour recevoir un des sacerdoces dont les villes grecques n’investissaient que les citoyens les plus considérés et les mieux pourvus. Quoi qu’il en soit, le Théon dont je veux rendre compte ici est l’auteur d’un ouvrage de vulgarisation, portant le titre : « Des connaissances mathématiques utiles pour la lecture de Platon » (« Tôn kata to mathêmatikon chrêsimôn eis tên Platônos anagnôsin » ****). On l’appelle communément l’« Exposition ». Cet ouvrage, important pour l’histoire des sciences de l’antiquité, comportait primitivement cinq parties, à savoir : 1o l’arithmétique ; 2o la géométrie (plane) ; 3o la stéréométrie (géométrie de l’espace) ; 4o l’astronomie ; 5o la musique. Je dis « primitivement », car il nous est parvenu plus ou moins remanié par un arrangeur byzantin. Il visait à faciliter la lecture de tout ce qui concernait ces sciences dans les œuvres de Platon, ou en d’autres mots, à rédiger un cours élémentaire de mathématiques à l’usage des philosophes : « Tout le monde conviendra assurément qu’il n’est pas possible de comprendre ce que Platon a écrit sur les mathématiques, si l’on ne s’est pas adonné à leur étude », dit Théon *****. « Je vais commencer [par] l’explication des théorèmes : non pas tous ceux qui seraient nécessaires aux lecteurs pour devenir de parfaits… géomètres, musiciens ou astronomes, car ce n’est pas le but que se proposent tous ceux qui veulent lire… Platon ; mais j’expliquerai [ceux] qui suffisent pour comprendre le sens de ses écrits. » Lisez la suite›

* En grec Θέων Σμυρναῖος. Autrefois transcrit Théon Smyrnéen.

** En grec Θέων ὁ παλαιός. On le surnomme l’Ancien pour le distinguer du père d’Hypatie, Théon d’Alexandrie, qui lui est postérieur.

*** En grec « ΘΕΩΝΑ ΠΛΑΤΩΝΙΚΟΝ ΦΙΛΟϹΟΦΟΝ Ο ΙΕΡΕΥϹ ΘΕΩΝ ΤΟΝ ΠΑΤΕΡΑ ».

**** En grec « Τῶν κατὰ τὸ μαθηματικὸν χρησίμων εἰς τὴν Πλάτωνος ἀνάγνωσιν ».

***** p. 3 & 25.

Euclide, « Les Éléments. Tome II »

éd. Presses universitaires de France, coll. Bibliothèque d’histoire des sciences, Paris

éd. Presses universitaires de France, coll. Bibliothèque d’histoire des sciences, Paris

Il s’agit des « Éléments » (« Ta Stoicheia » *) ou « Enseignement élémentaire » (« Hê Stoicheiôsis » **) d’Euclide d’Alexandrie ***, célèbre savant grec, dont le nom est pour la géométrie ce qu’est le nom d’Einstein pour la physique. La science grecque est essentiellement déductive. C’est avec elle que l’esprit humain conçoit, pour la première fois, la possibilité de poser un petit nombre de principes et d’en déduire un ensemble de vérités qui en soient la conséquence nécessaire. Les « Éléments » d’Euclide passent pour le modèle du genre. Ils débutent par une liste d’« axiomes » (c’est-à-dire de principes que l’on demande au lecteur d’admettre sans démonstration), énoncés de telle sorte qu’ils peuvent être acceptés par chacun ; tout en étant aussi peu nombreux que possible (environ une dizaine), ils suffisent à assurer la construction de tout l’édifice mathématique. Dans une première lecture, l’on serait tenté de croire qu’Euclide est l’inventeur de ce genre de construction. Il ne cite aucun nom de prédécesseur ; des propositions que nous désignons sous les noms de « théorème de Pythagore » ou « de Thalès » prennent place dans ses « Éléments » sans que soient rappelés ceux qui les ont énoncées en premier. Cependant, Euclide a beau ne pas citer ses sources, son œuvre décèle une diversité d’inspirations qui ne trompe pas ; elle n’est pas et ne saurait être l’œuvre d’une seule intelligence. Des géomètres plus anciens — Hippocrate de Chios ****, Hermotime de Colophon *****, Eudoxe de Cnide ******, Théétète d’Athènes *******, Theudios de Magnésie ******** — avaient écrit des « Éléments ». Le mérite d’Euclide est d’avoir réuni leurs démonstrations et surtout d’avoir composé un tout qui, par un enchaînement plus exact, fit oublier les ouvrages écrits avant le sien, qui devint le plus important sur cette matière. Voici ce qu’en dit Proclus dans ses « Commentaires aux “Éléments” » : « En rassemblant des “Éléments”, Euclide en a coordonné beaucoup d’Eudoxe, perfectionné beaucoup de Théétète et évoqué dans d’irréfutables démonstrations ceux que ses prédécesseurs avaient montrés d’une manière relâchée » Lisez la suite›

* En grec « Τὰ Στοιχεῖα ».

** En grec « Ἡ Στοιχείωσις ».

*** En grec Εὐκλείδης. Autrefois transcrit Euclides. On l’a longtemps confondu avec Euclide de Mégare, philosophe, « bien qu’ils n’aient pas été contemporains et qu’ils aient différé l’un de l’autre autant par leur genre d’esprit… que par la nature de leurs travaux » (Louis Figuier).

**** En grec Ἱπποκράτης ὁ Χῖος. Parfois transcrit Hippocrate de Chio. À ne pas confondre avec Hippocrate de Cos, le célèbre médecin, qui vécut à la même époque.

***** En grec Ἑρμότιμος ὁ Κολοφώνιος.

****** En grec Εὔδοξος ὁ Κνίδιος.

******* En grec Θεαίτητος ὁ Ἀθηναῖος.

******** En grec Θεύδιος ὁ Μάγνης.

Euclide, « Les Éléments. Tome I »

éd. Presses universitaires de France, coll. Bibliothèque d’histoire des sciences, Paris

éd. Presses universitaires de France, coll. Bibliothèque d’histoire des sciences, Paris

Il s’agit des « Éléments » (« Ta Stoicheia » *) ou « Enseignement élémentaire » (« Hê Stoicheiôsis » **) d’Euclide d’Alexandrie ***, célèbre savant grec, dont le nom est pour la géométrie ce qu’est le nom d’Einstein pour la physique. La science grecque est essentiellement déductive. C’est avec elle que l’esprit humain conçoit, pour la première fois, la possibilité de poser un petit nombre de principes et d’en déduire un ensemble de vérités qui en soient la conséquence nécessaire. Les « Éléments » d’Euclide passent pour le modèle du genre. Ils débutent par une liste d’« axiomes » (c’est-à-dire de principes que l’on demande au lecteur d’admettre sans démonstration), énoncés de telle sorte qu’ils peuvent être acceptés par chacun ; tout en étant aussi peu nombreux que possible (environ une dizaine), ils suffisent à assurer la construction de tout l’édifice mathématique. Dans une première lecture, l’on serait tenté de croire qu’Euclide est l’inventeur de ce genre de construction. Il ne cite aucun nom de prédécesseur ; des propositions que nous désignons sous les noms de « théorème de Pythagore » ou « de Thalès » prennent place dans ses « Éléments » sans que soient rappelés ceux qui les ont énoncées en premier. Cependant, Euclide a beau ne pas citer ses sources, son œuvre décèle une diversité d’inspirations qui ne trompe pas ; elle n’est pas et ne saurait être l’œuvre d’une seule intelligence. Des géomètres plus anciens — Hippocrate de Chios ****, Hermotime de Colophon *****, Eudoxe de Cnide ******, Théétète d’Athènes *******, Theudios de Magnésie ******** — avaient écrit des « Éléments ». Le mérite d’Euclide est d’avoir réuni leurs démonstrations et surtout d’avoir composé un tout qui, par un enchaînement plus exact, fit oublier les ouvrages écrits avant le sien, qui devint le plus important sur cette matière. Voici ce qu’en dit Proclus dans ses « Commentaires aux “Éléments” » : « En rassemblant des “Éléments”, Euclide en a coordonné beaucoup d’Eudoxe, perfectionné beaucoup de Théétète et évoqué dans d’irréfutables démonstrations ceux que ses prédécesseurs avaient montrés d’une manière relâchée » Lisez la suite›

* En grec « Τὰ Στοιχεῖα ».

** En grec « Ἡ Στοιχείωσις ».

*** En grec Εὐκλείδης. Autrefois transcrit Euclides. On l’a longtemps confondu avec Euclide de Mégare, philosophe, « bien qu’ils n’aient pas été contemporains et qu’ils aient différé l’un de l’autre autant par leur genre d’esprit… que par la nature de leurs travaux » (Louis Figuier).

**** En grec Ἱπποκράτης ὁ Χῖος. Parfois transcrit Hippocrate de Chio. À ne pas confondre avec Hippocrate de Cos, le célèbre médecin, qui vécut à la même époque.

***** En grec Ἑρμότιμος ὁ Κολοφώνιος.

****** En grec Εὔδοξος ὁ Κνίδιος.

******* En grec Θεαίτητος ὁ Ἀθηναῖος.

******** En grec Θεύδιος ὁ Μάγνης.