Mot-clefarithmétique

su­jet

Théon de Smyrne, « Exposition des connaissances mathématiques utiles pour la lecture de Platon »

XIXᵉ siècle

XIXe siècle

Il s’agit du phi­lo­sophe pla­to­ni­cien Théon de Smyrne1, éga­le­ment connu sous le sur­nom de Théon l’Ancien2 (Ie-IIe siècle apr. J.-C.). On ignore tout de sa bio­gra­phie. Ce­pen­dant, le ha­sard a voulu que le buste au­then­tique du phi­lo­sophe ait sur­vécu aux vi­cis­si­tudes des Em­pires et soit par­venu jusqu’à nous. Ce buste, trouvé à Smyrne par un mar­chand fran­çais, puis acheté à Mar­seille par le car­di­nal Ales­san­dro Al­bani, puis en­fin, cédé au pape Clé­ment XII, peut être vu à Rome, dans le mu­sée du Ca­pi­tole. L’inscription pla­cée sur son socle nous fait connaître ce­lui que ce marbre re­pré­sente : « Le prêtre Théon (consacre aux dieux l’image de) Théon, phi­lo­sophe pla­to­ni­cien, son père »3. On en dé­duit que Théon eut un fils du même nom, et que ce der­nier était as­sez riche pour re­ce­voir un de ces sa­cer­doces dont les villes grecques n’investissaient que les ci­toyens les plus consi­dé­rés et les mieux pour­vus. Quoi qu’il en soit, Théon le père dont je veux rendre compte ici est l’auteur d’un ma­nuel de vul­ga­ri­sa­tion scien­ti­fique por­tant l’intitulé : « Des connais­sances ma­thé­ma­tiques utiles pour la lec­ture de Pla­ton »4 (« Tôn kata to ma­thê­ma­ti­kon chrê­si­môn eis tên Pla­tô­nos ana­gnô­sin »5). Is­maël Boul­liau l’a édité et tra­duit, à Pa­ris, sous le titre d’« Ex­po­si­tion » (« Ex­po­si­tio ») qui lui est resté. Ce ma­nuel, im­por­tant pour l’histoire des sciences an­tiques, com­por­tait pri­mi­ti­ve­ment cinq par­ties : 1o l’arithmétique ; 2o la géo­mé­trie (plane) ; 3o la sté­réo­mé­trie (géo­mé­trie de l’espace) ; 4o l’astronomie ; 5o la mu­sique. Il vi­sait à fa­ci­li­ter la lec­ture de tout ce qui concer­nait ces sciences dans les œuvres de Pla­ton ; ou, en d’autres mots, à ré­di­ger un cours élé­men­taire de ma­thé­ma­tiques à l’usage des phi­lo­sophes : « Tout le monde convien­dra as­su­ré­ment qu’il n’est pas pos­sible de com­prendre ce que Pla­ton a écrit sur les ma­thé­ma­tiques, si l’on ne s’est pas adonné à leur étude », dit Théon6. « Je vais com­men­cer [par] l’explication des théo­rèmes né­ces­saires : non pas tous ceux qui se­raient né­ces­saires aux lec­teurs pour de­ve­nir de par­faits… géo­mètres, mu­si­ciens ou as­tro­nomes, car ce n’est pas le but que se pro­posent tous ceux qui veulent lire les écrits de Pla­ton ; mais j’expliquerai les théo­rèmes qui suf­fisent pour com­prendre le sens de ses écrits. »

  1. En grec Θέων Σμυρναῖος. Au­tre­fois trans­crit Théon Smyr­néen. Haut
  2. En grec Θέων ὁ παλαιός. On le sur­nomme l’Ancien pour le dis­tin­guer du père d’Hy­pa­tie, Théon d’Alexandrie, qui lui est pos­té­rieur. Haut
  3. En grec « ΘΕΩΝΑ ΠΛΑΤΩΝΙΚΟΝ ΦΙΛΟϹΟΦΟΝ Ο ΙΕΡΕΥϹ ΘΕΩΝ ΤΟΝ ΠΑΤΕΡΑ ». Haut
  1. Par­fois tra­duit « De ce qui est utile du point de vue scien­ti­fique à la lec­ture de Pla­ton » ou « Des choses qui en ma­thé­ma­tiques sont utiles pour la lec­ture de Pla­ton ». Haut
  2. En grec « Τῶν κατὰ τὸ μαθηματικὸν χρησίμων εἰς τὴν Πλάτωνος ἀνάγνωσιν ». Haut
  3. « Ex­po­si­tion des connais­sances ma­thé­ma­tiques utiles pour la lec­ture de Pla­ton », p. 3 & 25. Haut

Euclide, « Les Éléments. Tome II »

éd. Presses universitaires de France, coll. Bibliothèque d’histoire des sciences, Paris

éd. Presses uni­ver­si­taires de France, coll. Bi­blio­thèque d’histoire des sciences, Pa­ris

Il s’agit des « Élé­ments » (« Ta Stoi­cheia »1) ou « En­sei­gne­ment élé­men­taire » (« Hê Stoi­cheiô­sis »2) d’Euclide d’Alexandrie3, cé­lèbre sa­vant grec, dont le nom est pour la géo­mé­trie ce qu’est le nom d’Einstein pour la phy­sique. La science grecque est es­sen­tiel­le­ment dé­duc­tive. C’est avec elle que l’esprit hu­main conçoit, pour la pre­mière fois, la pos­si­bi­lité de po­ser un pe­tit nombre de prin­cipes et d’en dé­duire un en­semble de vé­ri­tés qui en soient la consé­quence né­ces­saire. Les « Élé­ments » d’Euclide passent pour le mo­dèle du genre. Ils dé­butent par une liste d’« axiomes » (c’est-à-dire de prin­cipes que l’on de­mande au lec­teur d’admettre sans dé­mons­tra­tion), énon­cés de telle sorte qu’ils peuvent être ac­cep­tés par cha­cun ; tout en étant aussi peu nom­breux que pos­sible (en­vi­ron une di­zaine), ils suf­fisent à as­su­rer la construc­tion de tout l’édifice ma­thé­ma­tique. Dans une pre­mière lec­ture, l’on se­rait tenté de croire qu’Euclide est l’inventeur de ce genre de construc­tion. Il ne cite au­cun nom de pré­dé­ces­seur ; des pro­po­si­tions que nous dé­si­gnons sous les noms de « théo­rème de Py­tha­gore » ou « de Tha­lès » prennent place dans ses « Élé­ments » sans que soient rap­pe­lés ceux qui les ont énon­cées en pre­mier. Ce­pen­dant, Eu­clide a beau ne pas ci­ter ses sources, son œuvre dé­cèle une di­ver­sité d’inspirations qui ne trompe pas ; elle n’est pas et ne sau­rait être l’œuvre d’une seule in­tel­li­gence. Des géo­mètres plus an­ciens — Hip­po­crate de Chios4, Her­mo­time de Co­lo­phon5, Eu­doxe de Cnide6, Théé­tète d’Athènes7, Theu­dios de Ma­gné­sie8 — avaient écrit des « Élé­ments ». Le mé­rite d’Euclide est d’avoir réuni leurs dé­mons­tra­tions et sur­tout d’avoir com­posé un tout qui, par un en­chaî­ne­ment plus exact, fit ou­blier les ou­vrages écrits avant le sien, qui de­vint le plus im­por­tant sur cette ma­tière. Voici ce qu’en dit Pro­clus dans ses « Com­men­taires aux “Élé­ments” » : « En ras­sem­blant des “Élé­ments”, Eu­clide en a co­or­donné beau­coup d’Eudoxe, per­fec­tionné beau­coup de Théé­tète et évo­qué dans d’irréfutables dé­mons­tra­tions ceux que ses pré­dé­ces­seurs avaient mon­trés d’une ma­nière re­lâ­chée »

  1. En grec « Τὰ Στοιχεῖα ». Haut
  2. En grec « Ἡ Στοιχείωσις ». Haut
  3. En grec Εὐκλείδης. Au­tre­fois trans­crit Eu­clides. On l’a long­temps confondu avec Eu­clide de Mé­gare, phi­lo­sophe, « bien qu’ils n’aient pas été contem­po­rains et qu’ils aient dif­féré l’un de l’autre au­tant par leur genre d’esprit… que par la na­ture de leurs tra­vaux » (Louis Fi­guier). Haut
  4. En grec Ἱπποκράτης ὁ Χῖος. Par­fois trans­crit Hip­po­crate de Chio. À ne pas confondre avec Hip­po­crate de Cos, le cé­lèbre mé­de­cin, qui vé­cut à la même époque. Haut
  1. En grec Ἑρμότιμος ὁ Κολοφώνιος. Haut
  2. En grec Εὔδοξος ὁ Κνίδιος. Haut
  3. En grec Θεαίτητος ὁ Ἀθηναῖος. Haut
  4. En grec Θεύδιος ὁ Μάγνης. Haut

Euclide, « Les Éléments. Tome I »

éd. Presses universitaires de France, coll. Bibliothèque d’histoire des sciences, Paris

éd. Presses uni­ver­si­taires de France, coll. Bi­blio­thèque d’histoire des sciences, Pa­ris

Il s’agit des « Élé­ments » (« Ta Stoi­cheia »1) ou « En­sei­gne­ment élé­men­taire » (« Hê Stoi­cheiô­sis »2) d’Euclide d’Alexandrie3, cé­lèbre sa­vant grec, dont le nom est pour la géo­mé­trie ce qu’est le nom d’Einstein pour la phy­sique. La science grecque est es­sen­tiel­le­ment dé­duc­tive. C’est avec elle que l’esprit hu­main conçoit, pour la pre­mière fois, la pos­si­bi­lité de po­ser un pe­tit nombre de prin­cipes et d’en dé­duire un en­semble de vé­ri­tés qui en soient la consé­quence né­ces­saire. Les « Élé­ments » d’Euclide passent pour le mo­dèle du genre. Ils dé­butent par une liste d’« axiomes » (c’est-à-dire de prin­cipes que l’on de­mande au lec­teur d’admettre sans dé­mons­tra­tion), énon­cés de telle sorte qu’ils peuvent être ac­cep­tés par cha­cun ; tout en étant aussi peu nom­breux que pos­sible (en­vi­ron une di­zaine), ils suf­fisent à as­su­rer la construc­tion de tout l’édifice ma­thé­ma­tique. Dans une pre­mière lec­ture, l’on se­rait tenté de croire qu’Euclide est l’inventeur de ce genre de construc­tion. Il ne cite au­cun nom de pré­dé­ces­seur ; des pro­po­si­tions que nous dé­si­gnons sous les noms de « théo­rème de Py­tha­gore » ou « de Tha­lès » prennent place dans ses « Élé­ments » sans que soient rap­pe­lés ceux qui les ont énon­cées en pre­mier. Ce­pen­dant, Eu­clide a beau ne pas ci­ter ses sources, son œuvre dé­cèle une di­ver­sité d’inspirations qui ne trompe pas ; elle n’est pas et ne sau­rait être l’œuvre d’une seule in­tel­li­gence. Des géo­mètres plus an­ciens — Hip­po­crate de Chios4, Her­mo­time de Co­lo­phon5, Eu­doxe de Cnide6, Théé­tète d’Athènes7, Theu­dios de Ma­gné­sie8 — avaient écrit des « Élé­ments ». Le mé­rite d’Euclide est d’avoir réuni leurs dé­mons­tra­tions et sur­tout d’avoir com­posé un tout qui, par un en­chaî­ne­ment plus exact, fit ou­blier les ou­vrages écrits avant le sien, qui de­vint le plus im­por­tant sur cette ma­tière. Voici ce qu’en dit Pro­clus dans ses « Com­men­taires aux “Élé­ments” » : « En ras­sem­blant des “Élé­ments”, Eu­clide en a co­or­donné beau­coup d’Eudoxe, per­fec­tionné beau­coup de Théé­tète et évo­qué dans d’irréfutables dé­mons­tra­tions ceux que ses pré­dé­ces­seurs avaient mon­trés d’une ma­nière re­lâ­chée »

  1. En grec « Τὰ Στοιχεῖα ». Haut
  2. En grec « Ἡ Στοιχείωσις ». Haut
  3. En grec Εὐκλείδης. Au­tre­fois trans­crit Eu­clides. On l’a long­temps confondu avec Eu­clide de Mé­gare, phi­lo­sophe, « bien qu’ils n’aient pas été contem­po­rains et qu’ils aient dif­féré l’un de l’autre au­tant par leur genre d’esprit… que par la na­ture de leurs tra­vaux » (Louis Fi­guier). Haut
  4. En grec Ἱπποκράτης ὁ Χῖος. Par­fois trans­crit Hip­po­crate de Chio. À ne pas confondre avec Hip­po­crate de Cos, le cé­lèbre mé­de­cin, qui vé­cut à la même époque. Haut
  1. En grec Ἑρμότιμος ὁ Κολοφώνιος. Haut
  2. En grec Εὔδοξος ὁ Κνίδιος. Haut
  3. En grec Θεαίτητος ὁ Ἀθηναῖος. Haut
  4. En grec Θεύδιος ὁ Μάγνης. Haut